We discuss how to handle change data in a hands-off filedrop process. We use the ingestion timestamp as a simple proxy for the effective date of each record, allowing us to version each day’s data. For files with multiple change records, we scan all columns to identify and rank potential effective date columns. We then pass this information to an automated rule, ensuring it gets applied as we load the data. This process enables us to efficiently handle change data, track data flow, and manage multiple changes in an automated way.